Chimie d’hydratation



Hydratation
transformation de pate fluide
en solide rigide

Grain de ciment hydrates
eau



Hydratation
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Dissolution

Ex. sel de table:
les ions dans un solide entré en solution.

Il y a une « limite de solubilité »
au-dela de laquelle la solution est
« saturée »

A
[Na’]
Solution saturée

[Na*]. [CI] = const.

>
[CI]



/\/W\/\/\ solubilité trés haute
\
4‘ [«SiO,»]

_

dans cette région:
le C5;S est dissous et
les hydrates sont précipitées -

N 777/

[«CaO»]

solubilité des autres phases:
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Phases present — 14 month paste from Taylor




Hydration of calcium silicates : C3S and C,S

'\
calcium hydroxyde

Hydrated lime crystalline
portlandite > hexagonal morphology
Ca(OH),

CH | ~25-28% of hydrated paste
-

hydrated calcium silicate
C-S-H

Mainly amorphous
multiple morphologies

~ 60-65% of hydrated paste

© CERILH



C-S-H



Definite phase, reproducible behaviour

Variable calcium to silicate ratio, depending on composition of solution
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Lothenbach, Nonat (2015) CCR



Structure based on natural mineral tobermorite

Ca/Si=0.83

Layers of Ca-O

14 A
1.4 nm

Interlayer water
and calcium

Tetrahera of Si-O4
linked in chains

Images by Aslam Kunhi
Mohamed



Tremendous progress in understanding C-S-H in last 20 years due
to use of NMR

Silicate structures : Q groups and NMR

C-S-H
©.0.0.0 .0 cement
J N ‘Q Qo /sand and quartz Q
2
DA -

/ silica fume Q4

40 -50 60 -70 -80 -90 -100 -110 -120 -130 -140
(Ppm)



Ways to vary C/S

Full chains, terminating hydroxides



Ways to vary C/S

Ca/Si= 0.8

Missing bridging tetrahedra



Ways to vary C/S

Ca/Si=
0.9

Missing bridging tetrahedra



Ways to vary C/S

Ca/Si=
1.0

¥¢

Calcium replacing two terminating hydroxides



Ways to vary C/S
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ting hydroxides




Ways to vary C/S
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Ways to vary C/S

Calcium in interlayer



ECOLE TOINTECHNIQUE
FEDERALE DE LAUSANNE

e Missing bridging tetrahedral
e Calcium replacing terminating hydrogens

e Calcium in interlayer

e No unique way to get a given C/S
e Structure probably has random organisation of these defects:

e One reason for low crystallinity by X-rays
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C-S-H: Si substitution by Al

05- °© 28days Ettringite

. Monosulfate

¥¢ ¥¢

OPC pastes: Al/Ca ~ 0.05 ; Al/Si~ 0.1 Location in bridging sites
Higher with Al rich SCMs




Structure at “meso” level

No long range order

“intrinsic” porosity of 26-28% (Powers)
— “gel porosity’
- from drying — therefore upper limit

- Scattering experiments (neutron, X-ray) and proton
NMR indicate “characteristic size” of about 4-5 nm



Two schools of thought

. Calcium silicate sheets
with OH- groups

82528 Interlayer space with
wwessss physically bound H,0
. Adsorbed H,0
Liquid H,0 in
) 82 nanopores
11 7
“Jennings” model Feldman-Serada” model

Discreet colloidal nanoparticles Linked nanocrystalline regions



C-S-H in cements

Fibrils (OP)

CalSi =1.41
AllSi = 0.05

[— T T

(a) Plain cement (PC), 90 days, 20°C (b) PC 10SF, 90 days, 20°C

Rossen ea (2015) CCR 75



Meso structure

- Two interpretations of nanocrystalline nature
- The main open question is whether they are discrete or linked by sheets




C-S-H: microstructure






Two microstructurally
distinct forms:
“Outer” or “early”
“Inner” or “late”






C-S-H summary

Atomic level structure fairly well understood:

— CaO sheets with chains (dimers) of SiO4 tetrahedra
attached

— Al substitutes for Si, in bridging sites

Meso level structure less clear

— Nanocrystallites or nanocrystalline regions with
characteristic scale of about 5nm

Microstructure
— Outer, formed early through solution
— Inner formed later



Open question

General agreement that C-S-H consists of nanocrystalline regions:

The main open question is whether they are discrete or linked by sheets



Réactions globales

C,S+53H=C, .SH, +13CH
C.,S+43H=C, _.SH, +0.3CH
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Level of connection is deceptive in 2D images

Due to close proximity of grains,
setting occurs at very low degrees of hydration ~ 2-4%






Quelque mois

Calcium hydroxide

Inner C-S-H

Outer C-S-H

Coupe d’un morceau de pate de ciment :
hydratée 40



réaction rapide
grandes plaques
d’hydrates

4

rigidification
« prise flash »
« flash set »




Hydration C;A without sulfate

“metastable”

C;A C,AH,
+ = => C,AH,

’ C,AH,



Hydration C,A without sulfate

“‘wet” TEM
Thesis
Scrivener
1984

10 minutes AFm 120 minutes

' ) ’7 %
AT i o -
R

SEM hydrogarnet

Thesis
Minard
2003



formation de « monosulfo »

C.A + CaSO,H, 4

L0% qypsum

g

0 2 S 10 15 20 25 30 35 40 45 50 55 60 65
{min) {(hours)
TIME

Le ralentissement
de réaction est liée
a I'absorption des
ions sulfates sur

le surface du C3A

ettringite




CsA + CaSO,H,
C,A +3CSH, +26H = C,A.3(CS)H,, (ettringite)

6Ca>" + 2A(OH), + 3SO2 +40H" +26H,0

= C,A.3(CS)H.,(ettringite)



Epuisement du sulfate

2C,A+C,A.3(CS)H,, +4H=3C,ACSH,

Calcium monosulfo aluminate
Monosulfo aluminate de calcium
llAlel

Pate a 7 jours

Formation local de monosulfo a
I'intérieur des couches de C-S-H ou
il'y a du C;A disponible.

L'ettringite reste a I'extérieur du
grain.




underlying mechanisms

Why does the initial

rapid reaction slow down?
What limits

reaction
at this stage ?

ﬁ
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~3 h ~10 h ~24 h



Three periods

UoIlN|OAD JeoH
—

~3 h

~10 h

~24 h
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Induction period

~3 h

~10 h

~24 h



A PROTECTIVRAGSBRYIGe spTead idea

8icin & Stevels, 1964], [de Jong, 1967], [Kondo & Dairnqq,_1968], [Brown et al. 198

; s 3.a) Disruptigsfof the protective

X layg@Oy osmotic pressure due to

e difference of ion concentration
between the inner solution and

the pore solution creating an osmotic
pressure.

uble , 1980]

) Disruption of the protective
layer due to the nucleation and
growth of more stable hydrates
i the protective membrane

. Formation of a
protective layer

around the grain
preventing [Stein &evels, 1964]

further dissolution T [Gartner & JeWgings, 1987]

1. Anhydrous grain

No direct evidence



Portland cement observed in the cryo SEM

Image from Luc Nicoleau



Theories of dissolution from Geochemistry

+ 2 minutes in saturated lime sol.

dissolution as negative growth

Dove et al. 2005

....................

From experiment  nn
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Induction period, summary

* No evidence for protective layer,
cannot explain many experimental results

* Dissolution as a function of undersaturation:

— Based on solid theoretical foundation from
geochemistry;

— Excellent agreement between, theory, experimental
measurement of dissolution and modelling;

— Can explain all experimental observations.



The Main Hydration Peak



Period Il, main heat evolution peak

e

What causes this
slow down?

UOIIN|OAS JesH

¥

~3 h ~10 h ~24 h

Acceleration Deceleration
period period

>
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e Atleast 4 very different mechanisms
have been fitted to the data set of Costoyal!

e They cannot all be right!

e (et 4 pictures from papers

ECOLE TOINTECHNIQUE
FEDERALE DE LAUSANNE



ECOLE TOINTECHNIQUE
FEDERALE DE LAUSANNE

e Diffusion controlled through layer

e Impingement of product

e Neither of these
is supported by the experimental data



ECOLE POLNTECHNIQUE

FEDERALE DE LAUSANNE

The layer of hydration
products provides a
barrier to the reaction.

Rate limiting step is the
diffusion of species
through this layer



Bishnoi 2008 : Post-peak “Diffusion”

0.25 0.8
0.7

g 0.6
‘o
3 0.5
g3 0.15
83 0.4
2E I
s
2
]
[+ 4

Good fits were obtained
but diffusion coefficient
varied by 10x

Not possible as
Same C-S-H formed
through solution

Rate of heat evolution

0 5 10 15 20 25
Time (hours) Time (hours)

uones

5 10 15 20 25
Time (hours)

— Experimental heat-rate

—— Experimental degree of hydration
x Calculated heat-rate
% Calculated degree of hydration

uonespfy jo aasSaqg



ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Same C-S-H for different particle sizes,
why should diffusion coefficient vary by 10X

Success of maturity approaches:

same activation energy

throughout main hydration peak

e Bond breaking / making processes
typically have Ea > 40 kJ/mol

e Transport controlled processes
have Ea <~20 kJ/mol

Low density region inside “shell”
does not fill in until much later

Gallucci et al. 2010
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Immement Avraml

Developed for solidifying metals
Simple 3D nucleation and growth:
growth oc surface available



Avrami equation gives the right kind of peak

It can be FITTED to cement hydration, but
parameters have no physical meaning and

2e+06
. vary from one cement to another

— Higher nucleation rate

— Lower nucleation rate
1.5e+06
1e+06
5e+05

0 I ! [ [

T T T T T T T T T T T T T T T 1
0 20 40 60 80 100



ECOLE TOINTECHNIQUE
FEDERALE DE LAUSANNE

e Very low impact of W/C
— this negates impingement as possible cause for deceleration

12 Measurement of length of C-
~ — C3S-wc-04 T
] ~asweos||  S-H needles shows initial
10+ \ rapid growth which slows
: [
7 o] wl 0 OWNC ] L %
El
'§‘ 6__ ano— +
=4 __ 5 200 -© (35--08
i @ (35-04
2‘_ 100
0 | T T T T I T T T T I T T T T I T T T T I T T T T 0 Frrr I . T T T T T T
0 5 10 15 20 25 0.1 1 10
Time [h] Time [d]

Bazzoni 2014



67

Small concentrations of zinc, huge
impact on main peak
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Micro mortar (2x2x2cm3)
compressive strength
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Bazzoni’s scenario

Acceleration period Deceleration period
Growth of C-S-H Formation of inner-product

OoP

D

IP

N
(L]
w

TIME OF HYDRATION

* Needles gradually cover the surface during the acceleration period.
* Needles grow fast to a certain length and then the rate slows dramatically.



L ECOLE POLYTECHNIQUE
[} FEDERALE DE LAUSANNE

e C-S-H growth as needles
e ALL parameters from experiment — NO fitting




Heat flow [mW/g]

Needle model: OQuzia 2017

-
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|

—— Model no Zinc

— Experiment no Zinc
—— Model with Zinc

— Experiment with Zinc

1

—— Model no Zinc
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n ECOLE POLYTECHNIQUE
] FEDERALE DE LAUSANNE

e |f mechanism is C-S-H growth: What controls this?

Solution composition ?

Other?




Main peak, summary

Many hypotheses can fit the form of the peak

Need to look at
a wide range of variables and
have physically measureable parameters

Best hypothesis:
Fast growth of needles to a critical length



Résumeé de 'hydratation
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Bilan Volumeétrique
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Experimental observations of reaction of different components
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Impact of SCMs
on main heat evolution peak



Physical effect on main hydration peak
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MOrtar VS PaSte Berodier et al.
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Effect of Slag, Fly ash, Limestone Berodier et al

o PC- quartz

o
©
I

- o PC
© 0.6 - e O ¢ PC-Limestone (3 sizes)

* W80 A PC-Slag
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m PC-Fly Ash
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shear rate between particles/ shear rate from mixing
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Berodier et al.
Micrographs: Cement + 40% Limestone

. "p, ‘ Y. : ;
<) Limestone grain 5h =X01R_ ‘W d).Cement grain.5h _ 500 nm

N ahe



Short summary

4I........I....I....I....I....I....
40% Quartz
40% %ag N ' Although inert, SCM have a
20V Fly As significant effect on the

—OPC
nucleation and growth of C-S-H

« Small increase in nucleation
sites due to the higher
shearing conditions

« Some surfaces, e.g. calcite
might favor the nucleation of

........ C-S-H and also change the

15 20 25 30 3 rowth
Hydration time (hours) gro

85
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Period lll, slow ongoing hydration

k

~3h ~10h ~24 h

Although this period is most important regarding strength development
mechanisms operating have not been studied in detail.



1 or 2 regimes?

About 6 days for w/c = 0.4

E.Berodier

ll. Space controlled

I1l. “densification”
similar for all
systems



Space filling

In first week or so space filling becomes the dominant mechanism

- “competition” between clinker and SCMs

Hydration clinker ~ calcined clay > slag >> flyash



Competition with calcined clay

@ Hydration degree of clinker

AS,+CC+CH +H—C,ACosH,+C-A-S-H

B Amount of reacted material in the calcined clay

92

-

28 days %

89

Calcined kaolinite content (%)

22
20
18

-
»

Amount of reacted material

14

in the calcined clay (%)

»

»

»

Increase of the
grade of calcined

clay:

Global increase of
the amount of
reacted material in
the calcined clay

Decrease of clinker
hydration degree




Questions

- Quelle phase contribue le plus au développement de résistance du

béton de ciment de Portland?

« Quels sont les produits principaux d'hydratation de cette phase?

Le gypse est ajouté pendant le meulage du ciment pour contrbler
I'nydratation de quelle phase?

« Quels sont les produits d’hydratation les plus importants résultant de

I'nydratation de la phase C3A?



